Prospective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries
نویسندگان
چکیده
PURPOSE Diffusion MRI requires acquisition of multiple diffusion-weighted images, resulting in long scan times. Here, we investigate combining compressed sensing and a fast imaging sequence to dramatically reduce acquisition times in cardiac diffusion MRI. METHODS Fully sampled and prospectively undersampled diffusion tensor imaging data were acquired in five rat hearts at acceleration factors of between two and six using a fast spin echo (FSE) sequence. Images were reconstructed using a compressed sensing framework, enforcing sparsity by means of decomposition by adaptive dictionaries. A tensor was fit to the reconstructed images and fiber tractography was performed. RESULTS Acceleration factors of up to six were achieved, with a modest increase in root mean square error of mean apparent diffusion coefficient (ADC), fractional anisotropy (FA), and helix angle. At an acceleration factor of six, mean values of ADC and FA were within 2.5% and 5% of the ground truth, respectively. Marginal differences were observed in the fiber tracts. CONCLUSION We developed a new k-space sampling strategy for acquiring prospectively undersampled diffusion-weighted data, and validated a novel compressed sensing reconstruction algorithm based on adaptive dictionaries. The k-space undersampling and FSE acquisition each reduced acquisition times by up to 6× and 8×, respectively, as compared to fully sampled spin echo imaging. Magn Reson Med 76:248-258, 2016. © 2015 Wiley Periodicals, Inc.
منابع مشابه
Accelerated MR diffusion tensor imaging using distributed compressed sensing.
PURPOSE Diffusion tensor imaging (DTI) is known to suffer from long acquisition time in the orders of several minutes or even hours. Therefore, a feasible way to accelerate DTI data acquisition is highly desirable. In this article, the feasibility and efficacy of distributed compressed sensing to fast DTI is investigated by exploiting the joint sparsity prior in diffusion-weighted images. MET...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملEfficient Global Spatial-Angular Sparse Coding for Diffusion MRI with Separable Dictionaries
Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo, by measuring water diffusion along angular gradient directions in q-space. High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor imaging, but the high number of samples needed to estimate diffusivity requires lengt...
متن کاملAccelerated Point Spread Function Mapping Using Compressed Sensing for EPI Geometric Distortion Correction
Introduction: Single-shot echo-planar imaging (EPI) is a fast technique allowing the acquisition of an image following a single RF excitation. The high temporal resolution of EPI makes it the method of choice for applications such as fMRI or diffusion tensor imaging. However, EPI is prone to geometric and intensity distortions in the presence of magnetic field inhomogeneities. Several correctio...
متن کاملAccelerated Diffusion Spectrum Imaging with Compressed Sensing Using Adaptive Dictionaries
Diffusion spectrum imaging offers detailed information on complex distributions of intravoxel fiber orientations at the expense of extremely long imaging times (∼1 h). Recent work by Menzel et al. demonstrated successful recovery of diffusion probability density functions from sub-Nyquist sampled q-space by imposing sparsity constraints on the probability density functions under wavelet and tot...
متن کامل